Ultralong spin coherence time in isotopically engineered diamond.
نویسندگان
چکیده
As quantum mechanics ventures into the world of applications and engineering, materials science faces the necessity to design matter to quantum grade purity. For such materials, quantum effects define their physical behaviour and open completely new (quantum) perspectives for applications. Carbon-based materials are particularly good examples, highlighted by the fascinating quantum properties of, for example, nanotubes or graphene. Here, we demonstrate the synthesis and application of ultrapure isotopically controlled single-crystal chemical vapour deposition (CVD) diamond with a remarkably low concentration of paramagnetic impurities. The content of nuclear spins associated with the (13)C isotope was depleted to 0.3% and the concentration of other paramagnetic defects was measured to be <10(13) cm(-3). Being placed in such a spin-free lattice, single electron spins show the longest room-temperature spin dephasing times ever observed in solid-state systems (T2=1.8 ms). This benchmark will potentially allow observation of coherent coupling between spins separated by a few tens of nanometres, making it a versatile material for room-temperature quantum information processing devices. We also show that single electron spins in the same isotopically engineered CVD diamond can be used to detect external magnetic fields with a sensitivity reaching 4 nT Hz(-1/2) and subnanometre spatial resolution.
منابع مشابه
Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer.
We have studied optical and spin properties of near-surface nitrogen-vacancy (NV) centers incorporated during chemical vapor phase growth of isotopically purified (12)C single-crystal diamond layers. The spectral diffusion-limited line width of zero-phonon luminescence from the NV centers is 1.2 ± 0.5 GHz, a considerable improvement over that of NV centers formed by ion implantation and anneali...
متن کاملAtom phase-locked coherence conversion using optical locking for ultralong photon storage beyond the spin T2 constraint
Using on-demand coherence conversion via optical locking, a dynamic coherent control of the collective atom phase has been demonstrated for longer photon storage beyond the critical constraint of spin phase decay time, where the storage time can be extended up to hours in a rare-earth-doped solid. Coherent transient phenomena such as photon echoes have been investigated for frozen phase decay v...
متن کاملElectron Spin Coherence of Phosphorus Donors in Isotopically Purified Si
We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals, employing a pulsed electron paramagnetic resonance technique. The samples were isotopically controlled so that they may possess different concentrations (about 5% and 100%) of 29Si, which is the only non-zero-spin (spin-1/2) stable isotope of Si. Both 29Siconcentration dependence and orientati...
متن کاملThermal effect and role of entanglement and coherence on excitation transfer in a spin chain
We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...
متن کاملNoise-resilient quantum evolution steered by dynamical decoupling
Realistic quantum computing is subject to noise. Therefore, an important frontier in quantum computing is to implement noise-resilient quantum control over qubits. At the same time, dynamical decoupling can protect the coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which simultaneously suppresses noise effects. We design and imple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2009